Inorganic Chemistry

Silver(I) Ethynide Coordination Networks and Clusters Assembled with *tert*-Butylphosphonic Acid

Yun-Peng Xie and Thomas C. W. Mak*

Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China

Supporting Information

ABSTRACT: Variation of the reaction conditions with AgC \equiv CR (R = Ph, C₆H₄OCH₃-4, ^tBu), ^tBuPO₃H₂, and AgX (X = NO₃, BF₄) as starting materials afforded four new silver(I) ethynide complexes incorporating the tertbutylphosphonate ligand, namely, 3AgC≡ $CPh \cdot Ag_2^{t}BuPO_3 \cdot Ag^{t}BuPO_3H \cdot 2AgNO_3$ (1), $2AgC \equiv$ $CC_6H_4OCH_3-4 \cdot Ag_2^t BuPO_3 \cdot 2AgNO_3$ (2), [{Ag_5(NO_3) $Ag_{18}Ag_{5}$ (^tBuC \equiv C)₁₆ (^tBuPO₃)₄ (H₂O)₃][{Ag₅(NO₃@ $Ag_{18}Ag_5\} (^{t}BuC \equiv C)_{16} (^{t}BuPO_3)_4 (H_2O)_4] \cdot 3SiF_6 \cdot 4.5H_2O \cdot C$ 3.5MeOH (3), and $[{Ag_8(Cl@Ag_{14})}({}^tBuC \equiv C)_{14}]$ $(^{t}BuPO_{3})_{2}F_{2}(H_{2}O)_{2}]BF_{4}\cdot 3.5H_{2}O$ (4). Single-crystal X-ray analysis revealed that complexes 1 and 2 display different layer-type coordination networks, while 3 and 4 contain high-nuclearity silver(I) composite clusters enclosing nitrate and chloride template ions, respectively, that are supported by ^tBuPO₃²⁻ ligands.

Recent growing interest in the study of metal ethynyl complexes stems from their structural diversity and technological application as precursors of nonlinear optical materials, luminescent probes, and rigid-rod molecular wires.¹⁻⁴ Of the related but different metal ethynide complexes, the RC \equiv C \supset Ag_n (n = 3-5; R = alkyl, aryl, heteroaryl) metal–ligand supramolecular synthon⁵ has been intensively investigated as novel polynuclear building units to assemble organosilver(I) networks⁶ and high-nuclearity clusters.⁷

In general, the reactions of phosphonic/arsonic acids with metal salts afford products that vary structurally from discrete molecules to multidimensional coordination polymers,⁸ which have potential applications⁹ in ion exchange, catalysis, and chemical sensing. Recently, we employed $(Me_4N)_3(H_3V_{10}O_{28})$ as a precursor to react with AgC=CPh, AgNO₃, and 'BuPO₃H₂ in dimethylformamide (DMF) to assemble two novel high-nuclearity silver(I) clusters, i.e., $\{(NO_3)_2@Ag_{16}(PhC=C)_4[(^{t}BuPO_3)_4V_4O_8]_2(DMF)_6(NO_3)_2\}$ and $\{[(O_2)V_2O_6]_3@Ag_{43}(PhC=C)_{19}[(^{t}BuPO_3)_4V_4O_8]_3(DMF)_6\}$, in which each phosphonate ligand binds two vanadium(V) atoms to form a $[(^{t}BuPO_3)_4(V_4O_8)]^{4-}$ structural building unit with its three oxygen atoms linked to silver(I) atoms.^{7g}

In the present work, we explored the utilility of *tert*butylphosphonic acid for the synthesis of high-nuclearity silver(I) clusters and successfully generated four new silver(I) ethynide complexes, namely, $3AgC \equiv CPh \cdot Ag_2^{t}BuPO_3$. $Ag^{t}BuPO_3H \cdot 2AgNO_3$ (1), $2AgC \equiv CC_6H_4OCH_3 - 4 \cdot Ag_2^{t}BuPO_3 \cdot 2AgNO_3$ (2), [{ $Ag_5(NO_3@Ag_{18})Ag_5$ }('BuC $\equiv C$)₁₆- $\begin{array}{l} ({}^{t}BuPO_{3})_{4}(H_{2}O)_{3}][\{Ag_{5}(NO_{3}@Ag_{18})Ag_{5}\}({}^{t}BuC \equiv C)_{16} \\ ({}^{t}BuPO_{3})_{4}(H_{2}O)_{4}]\cdot 3SiF_{6}\cdot 4.5H_{2}O\cdot 3.5MeOH \quad \textbf{(3), and} \\ [\{Ag_{8}(Cl@Ag_{14})\}({}^{t}BuC \equiv C)_{14}({}^{t}BuPO_{3})_{2}F_{2}(H_{2}O)_{2}] \\ BF_{4}\cdot 3.5H_{2}O \quad \textbf{(4), which have their structures fully characterized} \\ by single-crystal X-ray analysis. \end{array}$

The reaction of AgC \equiv CPh, AgNO₃, and ^tBuPO₃H₂ in DMF afforded colorless crystals of $3AgC \equiv CPh \cdot Ag_2^t BuPO_3$. Ag^tBuPO₃H·2AgNO₃ (1). Of the three independent phenylethynide anions in the crystal structure, the ethynide group composed of C17 and C18 is capped by a butterfly-shaped Ag₄ basket in the μ_4 - η^1 , η^1 , η^1 , η^1 coordination mode, and such Ag₄ baskets are bridged by a series of BuPO₃²⁻ and BuPO₃H⁻ anions to afford an infinite coordination chain in the direction of the *a* axis. The remaining two ethynide groups (C1 \equiv C2 and C9=C10) are each bound to a silver triangle in the μ_3 - η^1 , η^1 , η^1 coordination mode, as shown in Figure 1a. Four Ag₃ triangles coalesce by sharing four vertexes to produce a centrosymmetric 4PhC≡C⊃Ag₈ aggregate (Figure 1a), and such aggregates and the coordination chains composed of Ag₄ baskets are crossbridged by a series of $BuPO_3^{2^-}$, $BuPO_3H^-$, and NO_3^- anions to engender a coordination layer (Figure S1 in the Supporting Information, SI). The ^tBuPO₃²⁻ unit adopts the μ_6 -bridging mode to coordinate to six silver atoms (Figure S2a in the SI). However, in the ${}^{t}BuPO_{3}H^{-}$ unit, two oxygen atoms coordinate to five silver atoms, and its remaining protonated oxygen atom binds a silver atom (Figure S2b in the SI). The Ag $-O_P$ (O_P = oxygen atom of the *tert*-butylphosphonate ligand) bond lengths range from 2.239(7) to 2.699(7) Å. The nitrate ions adopt μ_1 and μ_4 -ligation modes to coordinate to silver atoms, with Ag– O_N (O_N = oxygen atom of the nitrate ligand) distances varying from 2.474(6) to 2.779(6) Å. A packing drawing showing the van der Waals interaction between coordination layers is shown in Figure S3 in the SI.

The synthetic procedure used to obtain $2AgC \equiv CC_6H_4OCH_3-4\cdot Ag_2{}^{t}BuPO_3\cdot 2AgNO_3$ (2) is similar to that of 1, except that $AgC \equiv CPh$ was replaced by $AgC \equiv CC_6H_4OCH_3-4$. In the crystal structure of 2, each independent ethynide moiety ($C1 \equiv C2$ or $C10 \equiv 11$) is bound to a Ag_4 basket (Figure 1b), and such baskets are mutually connected by vertex-sharing to generate an infinite argentophilic linear chain. These silver ethynide chains are interconnected through the bridging ${}^{t}BuPO_{3}{}^{2-}$ and NO_{3}^{-} ligands, affording a two-dimensional coordination network (Figure S4 in the SI). The ${}^{t}BuPO_{3}{}^{2-}$ unit adopts the μ_7 -bridging mode to coordinate to

 Received:
 May 7, 2012

 Published:
 July 31, 2012

Inorganic Chemistry

Figure 1. (a) Coordination environment of silver(I) atoms surrounded by three independent phenylethynides, two *tert*-butylphosphonates, and two nitrate ligands in $3AgC \equiv CPh \cdot Ag_2'BuPO_3 \cdot Ag'BuPO_3H \cdot 2AgNO_3$ (1), yielding Ag_4 and centro-symmetric Ag_8 aggregates. Symmetry code: A, -x, -y, 2 - z. (b) Coordination environment of silver(I) atoms surrounded by two independent 4-methoxyphenylethynide ligands, one *tert*-butylphosphonate, and two nitrate groups in $2AgC \equiv CC_6H_4OCH_3 \cdot 4 \cdot Ag_2'BuPO_3 \cdot 2AgNO_3$ (2). Note that Ag2 and Ag5 are each located at an inversion center. Symmetry code: A, -x, -y, -z; B, -1 - x, -y, -z; C, -1 - x, 1 - y, -z; D, -x, 1 - y, -z. The C $\equiv C$ triple bond is represented by a bold rod. The Ag. Coordinate for clarity. Color code: Ag, violet; C, gray; O, red; N, sky blue; P, yellow.

seven silver atoms (Figure S2c in the SI), with Ag–O_P bond distances from 2.214(5) to 2.509(5) Å. The two independent nitrate ions adopt μ_2 - and μ_5 -ligation modes to coordinate to silver atoms, with Ag–O_N distances varying from 2.293(6) to 2.782(6) Å. These two-dimensional coordination networks are interconnected through intermolecular C–H…O interactions to afford a three-dimensional supramolecular architecture (Figure S5 in the SI).

Our next attempt to employ $AgC \equiv C^{t}Bu$ as a synthetic precursor, with AgBF4 added to the reaction mixture, yielded $[{Ag_5(NO_3@Ag_{18})Ag_5}({}^tBuC \equiv C)_{16}({}^tBuPO_3)_4(H_2O)_3]$ - $[\{Ag_{5}(NO_{3}@Ag_{18})Ag_{5}\}({}^{t}BuC \equiv C)_{16}({}^{t}BuPO_{3})_{4}(H_{2}O)_{4}]\cdot 3SiF_{6}\cdot$ $4.5H_2O \cdot 3.5MeOH$ (3). The unit cell of 3 contains two slightly different Ag₂₈ silver clusters, each encapsulating a template nitrate ion: one cluster has three, and the other has four, water molecules coordinated to silver atoms. The enclosed NO₃⁻ ion coordinates to separate silver atoms by the μ_3 - η^1 , η^1 , η^1 ligation mode, with Ag-O bond distances ranging from 2.696(5) to 2.838(5) Å, which are longer than those found in $\{(NO_3)_2 @$ $Ag_{16}(PhC \equiv C)_{4}[(^{t}BuPO_{3})_{4}V_{4}O_{8}]_{2}(DMF)_{6}(NO_{3})_{2}\}$ (2.299– 2.431 Å).^{7g} The Ag_{28} cluster skeleton comprises two Ag_5 aggregates fused into a globular NO3@Ag18 cage on opposite sides (Figures 2 and S6 in the SI). Four tert-butylphosphonate ligands, each adopting the μ_6 -bridging mode to bind five silver atoms (Figure S2a in the SI), stabilize the cluster shell via Ag- O_P bond lengths ranging from 2.087(6) to 2.829(6) Å. Of the

Figure 2. (a) Core skeleton of one of the two nearly identical Ag_{28} clusters in complex 3. The encapsulated NO_3^- anion is represented by a larger ball-and-stick model. Hydrogen atoms and water molecules are omitted for clarity. The carbon atoms of the ethynide group are represented as small black balls, and their bonds to silver atoms are indicated by broken lines. Color code: Ag, violet; C, gray; O, red; N, sky blue; P, yellow.

16 peripheral 'BuC \equiv C ligands, 12 adopt the μ_3 -bridging and 4 the μ_4 -bridging mode to coordinate to silver atoms. The crystal packing is consolidated by nine solvated water molecules and seven methanol molecules, each exhibiting half site occupancy. The overall charge balance against the large cationic silver(I) cluster is provided by six hexafluorosilicate counteranions, each having half site occupancy in the crystal structure. Notably, in the preparation of 3, generation of the hexafluorosilicate ion presumably arises from the reaction of BF₄⁻ with the SiO₂ component of the glassware.¹⁰

The reaction of AgC \equiv C^tBu with AgBF₄, ^tBuPO₃H₂ and a small amount of $(Me_4N)Cl$, with the latter acting as a chloride source, in methanol yielded $[{Ag_8(Cl@Ag_{14})}](^tBuC \equiv$ $C_{14}(^{t}BuPO_{3})_{2}(H_{2}O)_{2}F_{2}]BF_{4}\cdot 3.5H_{2}O$ (4). Single-crystal X-ray analysis revealed that complex 4 contains a cationic Ag_{22} cluster, which lies on a crystallographic C_2 axis (Figure 3 and S7 in the SI). The cluster skeleton can be described as consisting of a rhombic-dodecahedral Ag₁₄ cage that encapsulates a chloride ion, with one vertex covered by a square face of an empty Ag₈ Archimedean antiprism. The resulting Ag₂₂ assembly is held together by two tertbutylphosphonate ligands, each adopting the μ_5 -bridging mode to bind five silver atoms (Figure S2d in the SI) via Ag– O_P bond lengths ranging from 2.116(2) to 2.320(2) Å. The argentophilic Ag...Ag bond distances lie in the range 2.878(2)-3.376(2) Å. The chloride atom does not lie in the center of the Ag₁₄ cage, being closer to the shared vertex at a Ag…Cl distance of 2.784(6) Å. The remaining Ag…Cl distances lie in the range of 2.999(6) - 3.537(6) Å, which are comparable to those found in $[Ag_{19}(^{t}BuC \equiv C)_{11}(CF_{3}CO_{2})_{7}Cl]$ (2.940-3.847 Å) and $[Ag_{14}(^{t}BuC \equiv C)_{12}Cl]BF_{4}$ (3.116–3.297 Å).¹¹ Each ^tBuC \equiv C ligand adopts the μ_3 -bridging mode to link a silver(I) triangle, and a total of 14 ligands are peripherally coordinated to silver atoms to consolidate the cluster. Additionally, two water molecules and two fluoride ions from the disassembly of BF_4^- function as terminal ligands, each coordinating to one silver atom. The crystal packing is further stabilized by four solvated water molecules, three exhibiting half site occupancy and one having quarter site occupancy. The overall charge balance against the silver anionic cluster is provided by one BF₄⁻ counteranion in the crystal structure.

Figure 3. $Cl@Ag_{22}$ cluster skeleton in complex 4, which lies on a crystallographic C_2 axis. The Cl^- template is represented by a larger green ball. Hydrogen atoms are omitted for clarity. The carbon atoms of the ethynide group are represented as small black balls, and their bonds to silver atoms are indicated by broken lines. Color code: Ag, violet; C, gray; O, red; Cl, green; P, yellow.

Notably, the Cl@Ag₁₄ cage is similar to four previously reported silver(I) ethynide clusters, $[Cl@Ag_{14}({}^{t}BuC \equiv C)_{12}] = BF_{4}, {}^{11b} [Cl@Ag_{14}({}^{t}PrC \equiv C)_{12}] NO_{3}, {}^{7h} [Cl@Ag_{14}({}^{t}BuC \equiv C)_{12}] OH, {}^{11a}$ and $[Cl@Ag_{14}(chxC \equiv C)_{12}] Cl$ (chx = cyclohexyl), 7h and the latter two clusters can be used as precursors to construct two high-nuclearity silver ethynide cluster compounds, $[Cl_{6}Ag_{8}@Ag_{30}({}^{t}BuC \equiv C)_{20}(ClO_{4})_{12}] \cdot Et_{2}O$ and $[Cl_{6}Ag_{8}@Ag_{30}(chxC \equiv C)_{20}(ClO_{4})_{10}](ClO_{4})_{2} \cdot 1.5Et_{2}O, {}^{7h}$ which bear the same novel $Cl_{6}Ag_{8}$ central core.

The syntheses and structural characterizations of 1-4 showed that the phosphonate species is directly involved in the formation of silver(I) ethynide complexes, and their structures are affected by variation of the silver(I) ethynide precursor, anionic templates, and solvent employed. In the synthesis of 4, the BF₄⁻ anion undergoes disassembly in solution, yielding F⁻ anions as terminal ligands, while the reaction of BF₄⁻ and SiO₂ derived from glassware afforded SiF₆²⁻ as the counteranion in 3.

In conclusion, on the basis of the ^tBuC \equiv C \supset Ag_n (n = 3-5) metal-ligand supramolecular synthon and the *tert*-butylphosphonate ligand, we have synthesized and structurally characterized four silver(I) ethynide complexes. Compounds **1** and **2** exhibit coordination layer-type architectures, and the latter features an argentophilic infinite chain. Compounds **3** and **4** provide precedents of high-nuclearity silver(I) ethynide {Ag₅(NO₃@Ag₁₈)Ag₅} and {Ag₈(Cl@Ag₁₄)} composite clusters bearing nitrate and chloride template ions, respectively. In our previous report on the synthesis of high-nuclearity silver(I) ethynide clusters, ^tBuPO₃²⁻ constitutes a structural component for building up the cluster shell,^{7g} but here in complexes **3** and **4**, it functions as a tripodal strut to support vertex-sharing or fusion of two small silver(I) clusters to form an enlarged composite cluster.

ASSOCIATED CONTENT

S Supporting Information

Experimental details, additional figures, and X-ray crystallographic data in CIF format for 1-4. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: tcwmak@cuhk.edu.hk.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is dedicated to Prof. Howard C. Clark on the occasion of his 85th birthday. This work was supported by the Hong Kong Research Grants Council (GRF ref. CUHK 402710) and the Wei Lun Foundation. We thank The Chinese University of Hong Kong for the award of a Postdoctoral Research Fellowship to Y.-P.X.

REFERENCES

- (1) Bruce, M. I. Chem. Rev. 1991, 91, 197-257.
- (2) Paul, F.; Lapinte, C. Coord. Chem. Rev. 1998, 178-180, 431-509.
- (3) Yam, V. W.-W. Acc. Chem. Res. 2002, 35, 555-563.

(4) Yam, V. W.-W.; Cheng, E. C.-C. Chem. Soc. Rev. 2008, 37, 1806–1813.

(5) Mak, T. C. W.; Zhao, L. Chem.—Asian J. 2007, 2, 456-467.

(6) (a) Zhao, L.; Wong, W.-Y.; Mak, T. C. W. Chem.—Eur. J. 2006, 12, 4865–4872. (b) Zang, S. Q.; Han, J.; Mak, T. C. W. Organometallics 2009, 28, 2677–2683.

(7) (a) Bian, S.-D.; Wu, H.-B.; Wang, Q.-M. Angew. Chem., Int. Ed. 2009, 48, 5363-5365. (b) Bian, S.-D.; Jia, J.-H.; Wang, Q.-M. J. Am. Chem. Soc. 2009, 131, 3422-3423. (c) Qiao, J.; Shi, K.; Wang, Q.-M. Angew. Chem., Int. Ed. 2010, 49, 1765-1767. (d) Gao, G.-G.; Cheng, P.-S.; Mak, T. C. W. J. Am. Chem. Soc. 2009, 131, 18257-18259. (e) Gruber, F.; Jansen, M. Angew. Chem., Int. Ed. 2010, 49, 4924-4926. (f) Putaj, P.; Lefebvre, F. Coord. Chem. Rev. 2011, 255, 1642-1685. (g) Xie, Y.-P.; Mak, T. C. W. J. Am. Chem. Soc. 2011, 133, 3760-3763. (h) Hau, S. C. K.; Cheng, P.-S.; Mak, T. C. W. J. Am. Chem. Soc. 2012, 134, 2922-2925. (i) Xie, Y.-P.; Mak, T. C. W. Chem. Commun. 2012, 1123-1125.

(8) (a) Clearfield, A. Prog. Inorg. Chem. 1998, 47, 371-510.
(b) Walawalkar, M. G.; Roesky, W.; Murugavel, R. Acc. Chem. Res. 1999, 32, 117-126. (c) Gagnon, K. J.; Perry, H. P.; Clearfield, A. Chem. Rev. 2012, 112, 1034-1054. (d) Zhang, L.; Schmitt, W. J. Am. Chem. Soc. 2011, 133, 11240-11248. (e) Almeida Paz, F. A.; Klinowski, J.; Vilela, S. M. F.; Tomé, J. P. C.; Cavaleiro, J. A. S.; Rocha, J. Chem. Soc. Rev. 2012, 41, 1088-1110. (f) Zhang, L.; Clérac, R.; Heijboer, P.; Schmitt, W. Angew. Chem., Int. Ed. 2012, 51, 3007-3011. (g) Breen, J. M.; Zhang, L.; Clement, R.; Schmitt, W. Inorg. Chem. 2012, 51, 19-21.

(9) (a) Clearfield, A. In New Developments in Ion Exchange Materials; Abe, M., Kataoka, T., Suzuki, T., Eds.; Kodansha, Ltd.: Tokyo, Japan, 1991. (b) Cao, G.; Hong, H.; Mallouk, T. E. Acc. Chem. Res. **1992**, 25, 420–427. (c) Mao, J.-G. Coord. Chem. Rev. **2007**, 251, 1493–1520.

(10) (a) Maekawa, M.; Kitagawa, S.; Kuroda-Sowa, T.; Munakata, M. *Chem. Commun.* **2006**, 2161–2163. (b) Chen, W.; Chu, J. F.; Mutikainen, I.; Reedijk, J.; Turpeinenb, U.; Song, Y.-F. *CrystEngComm* **2011**, *13*, 7299–7304.

(11) (a) Rais, D.; Yau, J.; Mingos, D. M. P.; Vilar, R.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 2001, 40, 3464–3467. (b) Rais, D.; Mingos, D. M. P.; Vilar, R.; White, A. J. P.; Williams, D. J. J. Organomet. Chem. 2002, 652, 87–93. (c) Bian, S.-D.; Wang, Q.-M. Chem. Commun. 2008, 5586–5588.